COVID-19 (Coronavirus)
UMBC campuses are closed, but courses are now online and employees are working remotely.
Skip to Main Content

Aaron T. Smith

unnamed (1)
Contact Information
Office: MEYR 475A
Phone: 410-455-1985

Assistant Professor

Post-Doc, Northwestern University, 2016

M. Sc., Ph. D., University of Wisconsin—Madison, 2012

B. A., Boston University, 2007

Professional Interests

Research in my lab focuses on understanding the structure and function of metalloproteins involved in crucial biological processes such as protein translation, peptide posttranslational modification, nutrient uptake, and protein regulation. My laboratory sits at the interface of chemistry, biochemistry, and biophysics, and members of my lab have the opportunity to learn a wide array of techniques from molecular biology and protein expression and purification (both soluble and membrane), to structural biology, spectroscopy, and anaerobic techniques. We welcome chemists, biochemists, and molecular biologists alike who are interested in understanding the role of inorganic elements in biological settings!


There are two current projects in the lab:214de6a5-1f47-4d3a-94a9-9f4250f44dc3

Protein Translation, Posttranslational Modification, and Heme 

Translation is the process by which genetic information in the form of messenger ribonucleic acid (mRNA) is decoded into a synthesized string of amino acids corresponding to a protein. Transfer RNAs (tRNAs) are single- stranded RNA molecules chiefly responsible for carrying and delivering amino acids to the ribosome for polypeptide synthesis, and tRNAs are aminoacylated in an energy-dependent manner at their 3’ end by a corresponding aminoacyl-tRNA synthetase (aaRS) (Figure 1A).


a0f22539-54e6-4d72-aed2-4dd63fd83babBesides their role in protein translation, aminoacylated tRNAs may be utilized for novel antibiotic synthesis, pathogenic bacterial membrane modification and cell wall synthesis, posttranslational peptide modifications and protein degradation, and even cofactor biosynthesis. For these uses, most organisms employ an aminoacyl tRNA transferase (aa-transferase) that functions to transfer the amino acid from the tRNA to a protein or peptide (Figure 1B). Intriguingly, both the aminoacyl-tRNA synthetase and aminoacyl tRNA transferase that function with the amino acid arginine (Arg) as their substrates appear to be regulated by iron protoporphyrin IX (heme b; Figure 2). These observations suggest a connection between protein biosynthesis, protein degradation, and in vivo supplies of Arg, the precursor to the gaseous neutrotransmitter and vasodilator nitric oxide (NO). However, the structural and mechanistic underpinnings of these processes remain poorly understood. We are using structural, spectroscopic, and enzymatic approaches to understand the mechanism of these enzymes and how regulatory elements control their function.



14fc203f-87bf-4a95-a75f-f795a2c294adPathogenic Iron Uptake and Delivery:

Iron is an essential element for virtually every living organism and has been adopted to serve in major biological processes such as nitrogen fixation, methane oxidation, hydrogen production, aerobic cellular respiration, oxygen transport, DNA biosynthesis, and even gene regulation. However, iron-based life represents a double-edged sword, as Fe(II) is bioavailable but highly reactive, whereas Fe(III) is intractable but fairly chemically inert. Every organism that utilizes iron employs biological pathways to obtain this element from the environment, to regulate its bioavailable concentration, and to sequester its excess. In order to establish infection in humans, pathogenic bacteria have evolved several responses to manage iron acquisition and utilization. In particular, sophisticated high-affinity metal-transport systems enable pathogens to scavenge iron from their surroundings. The ability to acquire and utilize iron aids in the proliferation of several pernicious bacteria, such as Heliobacter pylori (ulcer-causing agent), Legionella pneumophila (causative agent of Legionnaire’s disease), Campylobacter jejuni (common cause of food poisoning), Klebsiella pneumoniae(common cause of nosocomial infections), Vibrio cholerae (causative agent of cholera), and Salmonella enterica (another common cause of food poisoning).

One important route for the uptake of Fe(II) for bacteria is via the ferrous iron uptake (Feo) system (Figure 3). However, the mechanism of iron uptake through this pathway is poorly understood by comparison to Fe(III) and heme uptake pathways. In an era of increasing antibacterial resistance, understanding and targeting the routes of bacterial nutrient uptake are crucial to stem bacterial virulence. We are using a multifaceted approach to understand the structure and function of proteins involved in bacterial Fe(II) uptake.



Selected Publications

Smith, A. T., Barupala, D., Stemmler, T. L., and Rosenzweig, A. C. Discovery and Characterization of a Novel Metal Binding Domain Involved in Cadmium, Cobalt, and Zinc Transport. Nat. Chem. Biol. 2015. 11, 678-684.

Kathman, S.; Span, I.; Smith, A. T.; Xu, Z.; Zhan, J.; Rosenzweig, A. C.; Statsyuk, A. Discovery and Structural Characterization of Covalent Inhibitors of Nedd4-1 Ubiquitin Ligase Processivity J. Am. Chem. Soc. 2015. 137, 12442-12445

Smith, A. T. * ; Pazicni, S. * ; Marvin, K. A. * ; Stevens, D. J.; Freeman, K. M.; Burstyn, J. N. Functional Divergence of Heme-Thiolate Proteins: A Classification Based on Spectroscopic Attributes. Chem. Rev. 2015. 115, 2532-2558.

Smith, A. T., Smith, K.P., and Rosenzweig, A. C. Diversity of the Metal-Transporting P 1B -type ATPases. J. Biol. Inorg. Chem. 2014 19, 947-960.

Smith, A.T.; Marvin, K.A.; Freeman, K.M.; Kerby, R.L.; Roberts, G.P.; Burstyn, J.N. Identification of Cys 94 as the Distal Ligand to the Fe(III) Heme in the Transcriptional Regulator  RcoM-2 From Burkholderia xenovorans. J. Biol. Inorg. Chem. 2012, 17, 1071-1082.

Smith, A.T.; Su, Y.; Stevens, D. J.; Majtan, T.; Kraus, J.P.; Burstyn, J.N. The Effect of the Disease-Causing R266K Mutation on the Heme and PLP Environments of the Human Enzyme Cystathionine β-Synthase. Biochemistry 2012, 51, 6360-6370.

Barr, I.; Smith, A.T.; Chen, Y.; Senturia, R.; Burstyn, J.N.; Guo, F. Ferric, Not Ferrous, Heme Activates RNA-binding Protein DGCR8 for Primary microRNA Processing. Proc. Natl. Acad. Sci. U.S.A. 2012. 109, 1919-1924.

Barr, I.; Smith, A.T.; Senturia, R.; Chen, Y.; Burstyn, J.N.; Guo, F. DiGeorge Critical Region 8 (DGCR8) Is a Double-Cysteine- Ligated Heme Protein. J. Biol. Chem. 2011, 286, 16716-16725.

Smith, A.T.; Majtan, T.; Freeman, K.M.; Su, Y.; Kraus, J.P.; Burstyn, J.N. Cobalt Cystathionine β-Synthase: A Cobalt-Substituted Heme Protein with a Unique Thiolate Ligation Motif. Inorg. Chem. 2011, 50, 4417-4427.

Matjan, T.; Freeman, K.M.; Smith, A.T.; Burstyn, J.N.; Kraus, J.P. Purification and Characterization of Cystathionine Beta-Synthase Bearing Cobalt Protoporphyrin. Arch. Biochem. Biophys. 2011, 508, 25-30.

Honors and Awards

NIH Ruth L. Kirschstein NRSA Postdoctoral Fellowship (NU) 2013

University Housing’s Honored Instructor Award (UW) 2011

Charles & Martha Casey Excellence in Research Award (UW) 2011

Outstanding Chemistry Teaching Award (UW) 2010

Undergraduate Mentoring Award (UW) 2010

Undergraduate Research Award (BU) 2007

Department of Chemistry Research Award (BU) 2007

CHEMIA Vice President (BU) 2005—2007

Mark Riemen Summer Research Prize (BU) 2006

Courses Taught