Physical/Inorganic

Research programs here are directed towards understanding disease and oxidative damage, structure/reactivity of diverse compounds and related ions, and developing computational and spectroscopic tools for structural biology and homeland defense. This generally cross-disciplinary research relies on a combination of spectroscopic, biophysical, computational, and theoretical methods to address fundamental problems in chemical dynamics, energetics, and structure. Specific examples of ongoing research in inorganic chemistry include elucidating the role of metals in biology, including diseases such as Alzheimer’s and those initiated by oxidative damage. Projects employ a variety of spectroscopies, including absorption, fluorescence, electron paramagnetic resonance (EPR) and circular dichroism (CD). Computational and theoretical efforts that focus on strained, aromatic, and “exotic” compounds cross the boundaries of physical, organic, and inorganic chemistry. Laser spectroscopy is applied extensively to understand photochemical events. For example, ultrafast spectroscopy initiates and probes the earliest events of photochemical reactions to understand and even predict the topology of chemical reactions. Time-correlated single-photon counting can reveal the mechanism of response of fluorescent polymers, fabricated for environmental sensing applications. Computational chemists at UMBC are developing novel methods to predict the structure and vibrational energy transfer processes in proteins. In addition, ongoing research programs focus on application of neutron scattering and terahertz spectroscopy for structural determination of macromolecular assemblies.
FACULTY WITH RESEARCH INTERESTS IN PHYSICAL/INORGANIC

Arnold, Bradley

Dynamics of Charge Separation

Joseph Bennett

The in silico development of solid state materials families requires a combination of periodic trends, atomistic properties, and quantum mechanics.

Daniel-Onuta, Marie-Christine

Preparation of gold nanoparticles functionalized with different types of dendrons. Synthesis of gadolinium-functionalized dendrons

Geddes, Chris

Metal-Enhanced Fluorescence (MEF): Metal-Fluorophore Interactions

Kelly, Lisa

Time-resolved spectroscopy is used to elucidate the mechanisms of photoinduced DNA and protein modification. Structure-reactivity correlations in polymer dynamics.

Liebman, Joel

The chemistry of compounds of the nonmetals, especially those containing fluorine, the noble gases and boron; species with exotic structures and their energetics.

Singh, Narsingh

Selenides for NLO , Halides for AO and NLO applications, SiC, AlN and GaN for RF and microelectronics Binary, ternary and quaternary for radiological detection QPM for laser development

Smith, Aaron

Protein Translation, Post-translational Modification, and Hemeand Pathogenic Iron Uptake and Delivery